Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hepatol ; 80(1): 109-123, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37863203

RESUMO

BACKGROUND & AIMS: Comparative assessments of immunogenicity following different COVID-19 vaccines in patients with distinct liver diseases are lacking. SARS-CoV-2-specific T-cell and antibody responses were evaluated longitudinally after one to three vaccine doses, with long-term follow-up for COVID-19-related clinical outcomes. METHODS: A total of 849 participants (355 with cirrhosis, 74 with autoimmune hepatitis [AIH], 36 with vascular liver disease [VLD], 257 liver transplant recipients [LTRs] and 127 healthy controls [HCs]) were recruited from four countries. Standardised immune assays were performed pre and post three vaccine doses (V1-3). RESULTS: In the total cohort, there were incremental increases in antibody titres after each vaccine dose (p <0.0001). Factors associated with reduced antibody responses were age and LT, whereas heterologous vaccination, prior COVID-19 and mRNA platforms were associated with greater responses. Although antibody titres decreased between post-V2 and pre-V3 (p = 0.012), patients with AIH, VLD, and cirrhosis had equivalent antibody responses to HCs post-V3. LTRs had lower and more heterogenous antibody titres than other groups, including post-V3 where 9% had no detectable antibodies; this was heavily influenced by intensity of immunosuppression. Vaccination increased T-cell IFNγ responses in all groups except LTRs. Patients with liver disease had lower functional antibody responses against nine Omicron subvariants and reduced T-cell responses to Omicron BA.1-specific peptides compared to wild-type. 122 cases of breakthrough COVID-19 were reported of which 5/122 (4%) were severe. Of the severe cases, 4/5 (80%) occurred in LTRs and 2/5 (40%) had no serological response post-V2. CONCLUSION: After three COVID-19 vaccines, patients with liver disease generally develop robust antibody and T-cell responses to vaccination and have mild COVID-19. However, LTRs have sustained no/low antibody titres and appear most vulnerable to severe disease. IMPACT AND IMPLICATIONS: Standardised assessments of the immune response to different COVID-19 vaccines in patients with liver disease are lacking. We performed antibody and T-cell assays at multiple timepoints following up to three vaccine doses in a large cohort of patients with a range of liver conditions. Overall, the three most widely available vaccine platforms were immunogenic and appeared to protect against severe breakthrough COVID-19. This will provide reassurance to patients with chronic liver disease who were deemed at high risk of severe COVID-19 during the pre-vaccination era, however, liver transplant recipients had the lowest antibody titres and remained vulnerable to severe breakthrough infection. We also characterise the immune response to multiple SARS-CoV-2 variants and describe the interaction between disease type, severity, and vaccine platform. These insights may prove useful in the event of future viral infections which also require rapid vaccine development and delivery to patients with liver disease.


Assuntos
COVID-19 , Doenças do Sistema Digestório , Hepatite Autoimune , Hepatopatias , Transplante de Fígado , Humanos , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Cirrose Hepática , Anticorpos , Imunidade , Anticorpos Antivirais , Transplantados
2.
Front Immunol ; 13: 953949, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159846

RESUMO

Two doses of BNT162b2 mRNA vaccine induces a strong systemic SARS-CoV-2 specific humoral response. However, SARS-CoV-2 airborne transmission makes mucosal immune response a crucial first line of defense. Therefore, we characterized SARS-CoV-2-specific IgG responses induced by BNT162b2 vaccine, as well as IgG responses to other pathogenic and seasonal human coronaviruses in oral fluid and plasma from 200 UK healthcare workers who were naïve (N=62) or previously infected with SARS-CoV-2 (N=138) using a pan-coronavirus multiplex binding immunoassay (Meso Scale Discovery®). Additionally, we investigated the impact of historical SARS-CoV-2 infection on vaccine-induced IgG, IgA and neutralizing responses in selected oral fluid samples before vaccination, after a first and second dose of BNT162b2, as well as following a third dose of mRNA vaccine or breakthrough infections using the same immunoassay and an ACE2 inhibition assay. Prior to vaccination, we found that spike-specific IgG levels in oral fluid positively correlated with IgG levels in plasma from previously-infected individuals (Spearman r=0.6858, p<0.0001) demonstrating that oral fluid could be used as a proxy for the presence of plasma SARS-CoV-2 IgG. However, the sensitivity was lower in oral fluid (0.85, 95% CI 0.77-0.91) than in plasma (0.94, 95% CI 0.88-0.97). Similar kinetics of mucosal and systemic spike-specific IgG levels were observed following vaccination in naïve and previously-infected individuals, respectively. In addition, a significant enhancement of OC43 and HKU1 spike-specific IgG levels was observed in previously-infected individuals following one vaccine dose in oral fluid (OC43 S: p<0.0001; HKU1 S: p=0.0423) suggesting cross-reactive IgG responses to seasonal beta coronaviruses. Mucosal spike-specific IgA responses were induced by mRNA vaccination particularly in previously-infected individuals (71%) but less frequently in naïve participants (23%). Neutralizing responses to SARS-CoV-2 ancestral and variants of concerns were detected following vaccination in naïve and previously-infected participants, with likely contribution from both IgG and IgA in previously-infected individuals (correlations between neutralizing responses and IgG: Spearman r=0.5642, p<0.0001; IgA: Spearman r=0.4545, p=0.0001). We also observed that breakthrough infections or a third vaccine dose enhanced mucosal antibody levels and neutralizing responses. These data contribute to show that a previous SARS-CoV-2 infection tailors the mucosal antibody profile induced by vaccination.


Assuntos
COVID-19 , Vacinas Virais , Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , Imunoglobulina A , Imunoglobulina G , RNA Mensageiro , SARS-CoV-2 , Vacinação , Vacinas Sintéticas , Vacinas de mRNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...